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1 Introduction 11 

Among planners, it is commonly accepted that smart growth strategies, transit-oriented 12 
development (TOD), zoning, balancing job-housing ratios, among other policies, lead to 13 
reductions in vehicle-miles traveled, accident rates, noise, gaseous emissions and energy 14 
consumption (Dunphy, Cervero, Dock, McAvey, & Porter, 2004). While the impacts of 15 
such policies have been rationalized theoretically in great detail, it remains largely 16 
unknown how much change they actually induce. For example, while empirical data 17 
show that TOD enables residents to pursue a less auto-dependent lifestyle, it remains 18 
fairly unknown whether residents at TODs had been transit users before they moved into 19 
a TOD area (often referred to as residential self-selection) or whether their travel 20 
behavior actually changed (Handy, Cao, & Mokhtarian, 2006). It is furthermore widely 21 
acknowledged that integrating land-use and transportation planning leads to synergies 22 
that cannot be accomplished by either discipline alone (Moore, Thorsnes, & Appleyard, 23 
2007). However, studies to quantify this integration are rare.  24 
 25 
A prominent method to understand what-if relationships is spatial modeling. It allows 26 
testing of different alternatives in a simulation environment before costly projects or 27 
policies are implemented in reality. To measure the actual impact of integrated land-28 
use/transportation policies, the land-use model SILO has been integrated with the 29 
transportation model MSTM. In contrast to conventional land use models, SILO 30 
explicitly accounts for constraints in household relocation, considering housing costs, 31 
transportation costs and travel times. Should the travel or housing budget of a household 32 
be exceeded, relocation to a less expensive dwelling or a location with lower 33 
transportation costs is triggered in the model.  34 
 35 
Households looking for a new place to live attempt to fulfill as many of their location 36 
preferences as possible. In reality, however, households face a couple of constraints in the 37 
housing search. First and foremost, the price of a new dwelling is a constraint. Even 38 
though loans and bank credits allow households to afford places that exceed their 39 
currently available budget, households have to get along with their income in the long 40 
run. Therefore, low-income households cannot afford moving into the nicest houses on 41 
the market. The income is an obvious constraint on housing choice.  42 
 43 
Another constraint households face when looking for a new dwelling is travel time. An 44 
analysis of the 2007-2008 TPB/BMC Household Travel Survey for the Washington/ 45 
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Baltimore region revealed that 86% travel less than 60 min to work, and 99% travel less 1 
than 120 min to work. Thus, commuting for no more than two hours is another constraint. 2 
Work locations are even more restrictive if more than one household member is working. 3 
Given that the average time spent on commuting does not change much over time 4 
(Zahavi, Beckmann, & Golob, 1981), this constraint is not expected to alter much in the 5 
future. As a consequence, workers should be expected to move closer to their work 6 
location if congestion worsens, unless they have the opportunity to telework.  7 
 8 
A third constraint is concerned with the total household budget. According to the 9 
Consumer Expenditure Survey1, the average U.S. household spends 15.1% of its income 10 
on transportation. Should transportation become more expensive, households have to 11 
either adjust their travel behavior or reallocate their income. In reality, both happen. In 12 
some cases, particularly for low-income households, an increase in gas prices may trigger 13 
a household relocation to a less expensive apartment to ensure that the households gets 14 
along with its income in the long run.  15 
 16 
The literature review (section 2) shows that the majority of land-use models do not 17 
represent such constraints explicitly. Section 3 introduces the land-use model SILO, and 18 
section 4 explains how constraints are treated in SILO. Section 5 offers some preliminary 19 
model results, and section 6 ends this paper with conclusions and recommendations for 20 
future research. 21 

2 Literature review 22 

One of the pioneering land-use models was designed by John D. Herbert and Benjamin 23 
H. Stevens (1960) in cooperation with Britton Harris as an equilibrium model simulating 24 
distribution of households to residential land use. Lowry’s Model of Metropolis (Lowry, 25 
1964, 1966) is often considered to be the first computer model that truly integrated land 26 
use and transportation. The Lowry Model assumed the location of basic employment 27 
exogenously and generated an equilibrium for the allocation of non-basic employment 28 
and population. Over the last five decades, this popular model has been implemented 29 
many times (e.g., Batty, 1976; Mishra, Ye, Ducca, & Knaap, 2011; Wang, 1998). At least 30 
equally influential was Forrester’s Theory of Urban Interactions (1969). Even though it 31 
was an aspatial model, his description of interactions between population, employment 32 
and housing has led the design of many spatial land use models developed ever since.  33 
 34 
Putman developed the Integrated Transportation and Land Use model Package (ITLUP) 35 
(Putman, 1983, 1991), where land use was modeled by the Projective Land-Use Model 36 
(PLUM) (Goldner, Rosenthal, & Meredith, 1972; Reynolds & Meredith, 1972; 37 
Rosenthal, Meredith, & Goldner, 1972). Later, PLUM was replaced by the frequently 38 
applied Disaggregated Residential Allocation Model (DRAM) and an Employment 39 
Allocation Model (EMPAL). 40 
 41 

                                                
1 Available online at http://www.bls.gov/cex/#tables 
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Wilson’s Entropy Model (1967, 1970) generated an equilibrium by maximizing entropy 1 
of trips, goods flows or the distribution of population. Anas’ (1982) model called 2 
Residential Location Markets and Urban Transportation created an equilibrium between 3 
demand, supply and costs for housing. Anas’ model is not deterministic by assigning 4 
each dwelling to the highest-paying buyer, but rather probabilistic to represent variance 5 
in preferences and decisions.  6 
 7 
The MEPLAN model developed by Echenique is an aggregated land-use transport model 8 
(Abraham & Hunt, 1999; Echenique, Crowther, & Lindsay, 1969; Echenique et al., 1990) 9 
that used the basic concept of the Lowry model as a starting point. The model can 10 
simulate a variety of both land-use and transport scenarios. MEPLAN has been applied to 11 
more than 25 regions worldwide (John D. Hunt, Kriger, & Miller, 2005: 332). Another 12 
modeling approach using the Lowry model as a starting point is the TRANUS model (de 13 
la Barra, 1989: 143 ff; de la Barra, Pérez, & Vera, 1984; de la Barra & Rickaby, 1982) 14 
that simulates land use, transport, and its interactions at the urban and regional scale.  15 
 16 
Martínez (1996, 2002) developed a land-use model under the acronym MUSSA in which 17 
location choice is modeled as a static equilibrium. Residential and commercial land-use 18 
developments compete for available land. MUSSA used the bid-auction approach based 19 
on the bid-rent theory where consumers try to achieve prices as low as possible and not 20 
higher than their willingness to pay (Martínez, 1992). In the bid-rent theory, first 21 
introduced by Alonso (1964: 36 ff), land prices are an immediate result of the bid-auction 22 
process. In contrast, the discrete-choice approach -initially developed for housing choice 23 
by McFadden (1978: 76 ff)- models land being bought or rented with no instant effect on 24 
the price. Acknowledging that both approaches lead to equivalent results, Martínez 25 
argues elsewhere (1992: 884 f) that the bid-auction approach and the discrete-choice 26 
approach should be integrated and seen as inseparable rather than opposed.  27 
 28 
PECAS (2003; John D. Hunt & Abraham, 2009) is another land use model that represents 29 
an equilibrium of competing demand for developable land. Households relocate based on 30 
available floorspace, prices, accessibilities and other location factors. PECAS combines 31 
this bid-rent approach in a spatial economic model with a microscopic land development 32 
model. DELTA (Simmonds & Feldman, 2007) combines an economic model with 33 
households and job location model and a long-distance migration model. 34 
 35 
Wegener (1982, 1998b, 1999) developed the IRPUD model as a fully integrated land-use 36 
transport model. The household location choice is microscopic (Wegener, 1984), 37 
simulating every household individually. The IRPUD model was one of the few early 38 
approaches that contradicted the common assumption that land-use models shall reach an 39 
equilibrium at the end of each simulation period (Wegener, Gnad, & Vannahme, 1986). 40 
Land-use development aims at equilibrium constantly, but due to a continuously 41 
changing environment and slow reaction times of households, businesses, developers, 42 
and planners this equilibrium stage is never reached. The price of a new dwelling and the 43 
commute distance to the household’s main workplace are accounted for as true 44 
constraints in location choice. Similarly, the Metroscope model for Portland, Oregon 45 



 4 

(Conder & Lawton, 2002) compares expenditures for housing, transportation, food, 1 
health and all other expenses to ensure that household budgets are not exceeded.   2 
 3 
Microsimulation was introduced by Orcutt (1961: 45 ff.) and subsequently applied to a 4 
series of modeling tasks, including travel behavior, demographic change, spatial 5 
diffusion, health and land use (Clarke & Holm, 1987: 156 ff.). The most influential 6 
microscopic land use models include the California Urban Futures (CUF) Model (Landis 7 
& Zhang, 1998a, 1998b), the Integrated Land Use, Transport and Environment (ILUTE) 8 
model (Miller, Hunt, Abraham, & Salvini, 2004; Miller & Salvini, 2001; Salvini & 9 
Miller, 2003), the Urban Simulation (UrbanSim) model at the University of Washington, 10 
Seattle (Waddell, 2002; Waddell et al., 2003), the Learning-Based Transportation 11 
Oriented Simulations System (ALBATROSS) (Arentze & Timmermans, 2000), 12 
Predicting Urbanisation with Multi-Agents (PUMA) (Ettema, de Jong, Timmermans, & 13 
Bakema, 2004), SimDELTA (Simmonds & Feldman, 2007) and the Integrated Land-Use 14 
Model And transportation System Simulation (ILUMASS) (Strauch et al., 2005; Wagner 15 
& Wegener, 2007). 16 
 17 
Good overviews of operational land-use/transport models are given particularly by Hunt 18 
et al. (2005), Wegener (1994, 1998a, 2004), Wegener and Fürst (1999: 42 ff), 19 
Timmermans (2003), Kanaroglou and Scott (2002), the U.S. Environmental Protection 20 
Agency EPA (2000: 27 ff), or Kain (1987). The literature review showed that the 21 
majority of land use models do not explicitly represent constraints. The majority of 22 
models lead to an equilibrium reaching an “ideal” distribution of households and land 23 
uses. Commonly, land use is viewed as a decision-making process in which users 24 
optimize their utilities, rather than making choices among a limited set of alternatives. 25 
Notable exceptions are the IRPUD model Metroscope, which explicitly constrain 26 
households to move to dwellings that are within their respective price range.  27 

3 The land use model SILO 28 

SILO was designed as a microscopic discrete choice model. Every household, person and 29 
dwelling is treated as an individual object. All decisions that are spatial (household 30 
relocation and development of new dwellings) are modeled with Logit models. Initially 31 
developed by Domencich & McFadden (1975), such models are particularly powerful at 32 
representing the psychology behind decision making. Other decisions (such as getting 33 
married, giving birth to a child, leaving the parental household, upgrading an existing 34 
dwelling, etc.) are modeled with Markov models by applying transition probabilities.  35 
 36 
SILO is built as a middle-weight tool. To fully represent interactions between land use 37 
and transportation, SILO is fully integrated with the Maryland Statewide Transportation 38 
Model (MSTM). On the other hand, it is built to work with less rigorous data collection 39 
and estimation requirements than traditional large-scale land-use models, making SILO 40 
simpler to implement. Figure 1 provides an overview of the SILO model.  41 
 42 
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 1 
Figure 1: Model flowchart for SILO 2 

 3 
At the beginning, a synthetic population is created for the base year 2000. The Public Use 4 
Micro Sample (PUMS) 5% dataset2 is used to create this synthetic population. Using 5 
expansion factors provided by PUMS, household records with their dwelling are 6 
duplicated until the population by PUMS zone (called PUMA) matches 2000 census data. 7 
The location is disaggregated from PUMA to model zones using the socio-economic data 8 
of the MSTM as a weight. Work places are created based on MSTM zonal employment 9 
data. For each worker, a work location is chosen based on the average commute trip 10 
length distribution found in the 2007-2008 TPB/BMC Household Travel Survey. SILO 11 
simulates events that may occur to persons, households and dwellings: 12 
 13 

• Household 14 
o Relocation 15 
o Buy or sell cars 16 

• Person 17 
o Aging 18 
o Leave parental household 19 
o Marriage 20 
o Birth to a child 21 
o Divorce 22 
o Death 23 
o Find a new job 24 
o Get laid off 25 

• Dwelling 26 
o Construction of new dwellings 27 

                                                
2 Available for download at http://www2.census.gov/census_2000/datasets/PUMS/FivePercent/ 
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o Renovation 1 
o Deterioration 2 
o Demolition 3 
o Increase or decrease of price 4 

 5 
These events are modeled in random order. The random order avoids path dependency 6 
and models events as they happen in reality: Someone celebrates a birthday, somewhere a 7 
household moves, another house is renovated, etc. SILO is calibrated to match observed 8 
land use changes from 2000 to 2010 (so-called backcasting), to reasonable model 9 
changes of population and housing into the future to the year 2040. 10 
 11 
SILO is open-source software and was initially developed with research funding by 12 
Parsons Brinckerhoff, Inc. The prototype application was implemented for the 13 
Metropolitan Area of Minneapolis/St. Paul, Minnesota. Currently, the Maryland 14 
Department of Transportation supports the implementation of an improved version for 15 
the State of Maryland. SILO provides a GUI (Graphical User Interface) to facilitate 16 
model applications. A visualization tool is included for the analysis of model results. 17 
Further information on model design and implementation can be found at www.silo.zone. 18 

4 Modeling constraints 19 

SILO explicitly represents several constraints households face in location choice. 20 
Following, three constraints are described in more detail, namely housing costs, commute 21 
travel time and household transportation budget.  22 

4.1 Housing cost constraint 23 

The costs of a dwelling form an immediate constraint on any relocation choice. While 24 
households may exceed their housing budget temporarily, households have to get along 25 
with their income in the long run. The distribution of rent and mortgage payments in the 26 
base year according to PUMS data is used as guidance on how much households are 27 
willing to pay for housing. Figure 2 shows the aggregation to reveal the willingness to 28 
pay rent or to pay for a mortgage. As expected, higher income households tend to pay 29 
higher rents than low-income households.  30 
 31 
The relationship between income and housing expenses shown in Figure 2 is used to 32 
calculate the utility of a given price using equation 1.  33 

 Equation 1 34 

where: 35 

  Utility of price p of dwelling d 36 
 Share of households with income inc who have paid pricej in base 37 

year 38 

utilpd =1− hhSharepricej ,inc
pricej

pricej<pricei

∑

utilpd
hhSharepricej ,inc
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 1 

 2 
Figure 2: Willingness to pay rent by household income (Source: PUMS 2000 database) 3 

The higher the price, the lower the utility, and the utilities decline faster for low-income 4 
households than for high-income households. When the share of households paying a 5 
certain amount of rent reaches zero, the utility becomes zero and that dwelling becomes 6 
unavailable for this household type. 7 

4.2 Commute travel time constraint 8 

The travel time to work is a principal driver for household location choice. With the 9 
exception of workers who regularly work from home, the travel time from home to work 10 
is an important constraint when choosing a new place to live. Travel time to work is 11 
remarkably constant over time (van Wissen, Golob, & Meurs, 1991; Zahavi et al., 1981). 12 
The aforementioned TPB/BMC household travel survey was analyzed for the time spent 13 
on home-to-work trips. Figure 3 shows estimated gamma functions representing the 14 
observed trip length frequency distribution for commute trips. Because respondents tend 15 
to round their travel time to even numbers (for example, 12 percent reported their 16 
commute to be exactly 30 min), the observed trip length frequency distribution is lumpy 17 
and needs to be interpolated. The gamma function shown in Figure 3 was calibrated to 18 
match the reported average trip length.  19 
 20 
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 1 
Figure 3: Estimated commute travel time for rural, suburban and urban residents 2 

 3 
Residents living in the urban counties in Baltimore, Washington, Arlington and 4 
Alexandria have above-average commute times. Even though their average trip lengths 5 
with 9.8 miles is shorter than the average commute trip length of outer suburbs residents 6 
(15.5 miles), urban residents have to cope with more severe congestion, and therefore, 7 
need more time to get to work. Also, the transit share is much higher in urban areas, 8 
which often leads to longer travel times. The trip length frequency distributions in time 9 
are expected to not change significantly in the future. When households look for a new 10 
housing location, the job location of all workers of this household are taken into account. 11 
Housing locations that are too far from the household’s work locations receive a low 12 
utility closer to zero. 13 
  14 
The left map in Figure 4 shows an example of a work location in North Bethesda, MD 15 
(turquoise dot). The trip length frequency distribution of the household travel survey is 16 
used to estimate the utility in terms of commute distance for every other zone (shown in 17 
brown-to-yellow colors). The map in the center shows the home location probability for a 18 
person working in Columbia, MD. If these two persons lived in the same household, their 19 
joint area within a reasonable distance to their work locations would be shown in the map 20 
on the right side of Figure 4. SILO explicitly represents this constraint when searching 21 
for a new housing location. The average commute trip length frequency shown in Figure 22 
3 with a dotted line is scaled to values between 0 and 1 and applied as the commute 23 
distance utility. 24 
 25 
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Figure 4: Likely housing locations for a household with workers in North Bethesda (left), 1 

Columbia (center) and both (right) 2 
 3 
Unfortunately, telework is not represented explicitly in SILO at this point. An employee 4 
working from home a few days per week is likely to be less constrained by the location of 5 
her or his employer and willing to accept longer commute travel times for the few days 6 
this person is actually commuting to the work location. It is planned to enhance the model 7 
to allow certain occupations types to telecommute, and thereby, offset some of their 8 
travel time budget. 9 

4.3 Household budget constraint 10 

Another constraint explicitly reflected in SILO covers household expenditures. 11 
According to the Consumer Expenditure Survey3 of the Bureau of Labor Statistics, 12 
households spent an average of 13 percent of their income on transportation. Low-income 13 
households spent as much as 28% of their income on transportation. If transportation 14 
costs rise, households will be required to shift expenses. While affluent households will 15 
simply reduce savings or discretionary spending to cover increased transportation costs, 16 
low-income households may struggle to cover substantially higher transportation costs. A 17 
household searching for a new home will estimate transportation costs and consider 18 
carefully if transportation costs at a given home location are within the budget. A low-19 
income household may decide to locate closer to the work location or choose a transit-20 
friendly environment that may allow reducing the number of cars owned by the 21 
household.  22 
 23 
Figure 5 compares average income with average expenditures for households with 24 
different incomes. The plot shows data for SILO’s base year 2000, data for 2005 and 25 
2010 were analyzed and displayed very similar patterns. Interestingly, households in 26 
income categories with an annual pre-tax income below $41,499 on the average spend 27 
more money then they earned. According to the BLS, such households draw on savings 28 
or borrow money. Students may get by on loans and retirees may rely on savings4. As 29 
SILO does not trace debts a household may temporarily accumulate, it is simply 30 

                                                
3 Data available online at http://www.bls.gov/cex/home.htm 
4 For a more detailed discussion of this phenomenon compare http://www.bls.gov/cex/csxfaqs.htm#q21 
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acknowledged that households have access to money to cover their expenses. For 1 
example, a household with an after-tax income of $7,192 (left-most point in Figure 5) is 2 
assumed to have access to $15,703 to spend.  3 
  4 

 5 
Figure 5: Household income and expenditures (Source: Consumer Expenditure Survey, BLS) 6 

A polynominal curve has been estimated to reflect the relationship between income and 7 
expenditures (shown with a red dashed line in Figure 5). For household incomes greater 8 
than $41,499 (whose income exceeds expenditures), the entire income is assumed to be 9 
available for expenditures, even though the average household at that income level tends 10 
to save some money. Due to the parameter γ, the available money for expenditures can 11 
never drop below $10,794, even if the household income is 0. 12 

eh =max inc, α ⋅ inch
2 +β ⋅ inch +γ( )"

#
$
%  Equation 2 13 

where: 14 

eh Budget available for expenditures of household h 15 
inch Income of household h 16 
α, β, γ  Parameters, estimated to α = -2E-6, β = 0.8229 and γ = 10,794 17 

 18 
According to the Consumer Expenditure Survey, expenses for gasoline and motor oil 19 
make up between 3.8 percent of all household expenses for high-income and 5.3 percent 20 
for households with an average income. Though this may not seem high, an increase of 21 
travel costs may become a serious burden for low-income households. Litman (2013) 22 
suggested that fuel price elasticity is between -0.1 and -0.2 for short run and between -0.2 23 
and -0.3 for medium run adjustments. Short-run adjustments include choosing different 24 
trip destinations and switching the mode, while long-run adjustments (which typically 25 
apply after one to two years) include the purchase of more fuel-efficient vehicles and 26 
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selecting more accessible home and job locations. Because a household move is part of a 1 
medium- to long-run adjustment, the higher elasticity with an average of -0.25 was 2 
chosen in SILO: Should gas prices increase by 10 percent, travel demand is expected to 3 
decline by 2.5 percent. Transportation tc costs are calculated based on auto-operating 4 
costs (set to 8.1 cents per mile in the base scenario), the distance to work and 5 
transportation required for other purpose, such as shopping, dropping off children at 6 
childcare, doctor visits, etc. For a scenario that analyzes the impact of higher fuel costs, 7 
the adjusted transportation expenditures are calculated by 8 

eth = tcs 1+
tcs−tcb
tcb

⋅el( )  Equation 3 9 

where: 10 

eth Expenditures of household h for transportation 11 
tc Transportation costs (b for base case and s for alternative scenario) 12 
el Elasticity of travel demand on transportation costs, set to -0.25 13 

 14 
In addition to adjusting travel behavior and locations, many households will need to 15 
rebalance expenditures if transportation costs rise. Figure 6 shows the relative size of 16 
various expenditure types. The total expenditure is identical to the expenditure line 17 
shown in Figure 5, and the shares of various expenditure categories were estimated 18 
equally by a polynominal function using observations of the Consumer Expenditures 19 
Survey. A certain share of “Other expenditures” is assumed to be discretionary and could 20 
be used to offset increased transportation costs. No data were available to quantify 21 
discretionary spending, and a few data points5 were assumed to estimate a smooth curve 22 
for the discretionary spending shown in Figure 6.  23 
 24 
A binomial logit model (equation 4) is used to calculate the utility for transportation 25 
costs. If the discretionary income and savings are insufficient to cover the transportation 26 
costs of a given dwelling, the utility for transportation costs at this dwelling is set to 0. 27 
 28 

if (edis,h + sh < tc):          
 29 

if (edis,h + sh  >= tc):      
 Equation 4 30 

where: 31 

 Utility of dwelling d for transportations budget tb 32 
β  Parameters describing sensitivity of increased transportation costs 33 
edis,h Discretionary expenditures of household h 34 
sh Savings of household h 35 
 36 

 37 

                                                
5 Assumed data points for Income/discretionary spending: [$0/$100; $20,000/$1,000; $40,000/$2,200; 
$100,000/$10,000; $150,000/$20,000]  

utiltbd = 0

utiltbd =
1

1+ exp β ⋅ edis,h+shtc( )

utiltbd
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 1 
Figure 6: Share of expenditure types by household income (Source: Consumer Expenditure 2 

Survey, BLS) 3 
For households with a higher income, this utility will always be close to 1, as an increase 4 
in transportation costs is insignificant for these households. Households with lower 5 
incomes, however, will find a lower utility if transportation costs at a given dwelling are 6 
high. Should transportation costs exceed the discretionary income plus savings, the utility 7 
for the dwelling will be set to 0, which prevents this household from moving into this 8 
dwelling.   9 

4.4 Merging utilities 10 

In addition to housing costs, commute travel times and transportation costs (described 11 
sections 4.1 to 4.3), a number of further location attributes are included that are deemed 12 
to be desirable but non-essential. Such location factors include the size and the quality of 13 
the new dwelling and the accessibility to population and employment by auto and transit. 14 
While these location factors are desirable, one strong attribute may compensate for 15 
another weak attribute. For example, a house in the suburbs may be weak in terms of 16 
accessibility but strong in terms of size. In contrast, urban apartments tend to be weak in 17 
size but provide excellent accessibilities. A strong attribute may offset a weak attribute, 18 
depending on the household preferences. Those location factors are summarized by 19 
weighted addition: 20 
  21 



 13 

urfd =α ⋅usized +β ⋅uqualityd +γ ⋅uautoAccd + 1−α −β −γ( ) ⋅utransitAccd  Equation 5 1 

where: 2 
urfd   Utility of replaceable factors for dwelling d 3 
α, β, γ  Parameters as weights for each factor, distinguished by household types 4 
ufactord  Utility of attribute of dwelling d (e.g., size, quality, auto accessibility or 5 

transit accessibility)  6 
 7 
In contrast to replaceable utilities, essential utilities are assumed to be mandatory to be 8 
fulfilled. For example, if a dwelling is too expensive for a household, the total utility for 9 
this dwelling shall be set to 0 for this particular household. This is achieved by using the 10 
Cobb-Douglas function that aggregates utilities by multiplication: 11 

ud = urfd
α ⋅utilpd

β ⋅utilctd
γ ⋅utiltbd

1−α−β−γ( )  Equation 6 12 

where: 13 
ud Utility of dwelling d 14 
urfd Utility of replaceable factors of dwelling d 15 
utilpd  Utility of the price of dwelling d 16 
utilctd  Utility of the commute time for dwelling d 17 
utiltbd  Utility of the transportation budget required for dwelling d 18 
α, β, γ  Parameters as weights for each factor, distinguished by household types 19 

 20 
Using a multiplication to aggregate essential location factors ensures that if one utility is 21 
0, the entire utility for this dwelling will becomes 0. This way, it is ensured that 22 
households do not move into a place that violates budget constraints.  23 

5 Preliminary Results 24 

The integrated land-use/transportation modeling suite using SILO and the MSTM 25 
transportation model has been used to test various scenarios. This paper looks into smart 26 
growth in Maryland, and one dominant policy of both the Maryland Department of 27 
Planning and the Maryland department of Transportation is Transit-Oriented 28 
Development (TOD). To provide an example of how the integrated SILO/MSTM works, 29 
TOD scenarios were implemented in Maryland just outside the District of Columbia. 30 
Figure 7 shows the four sites that were selected, all of which will be connected with the 31 
Purple Line, a new circumferential light rail line in the Maryland suburbs. Bethesda and 32 
Silver Spring are both locations that are on the Metro Rail system and function as TOD 33 
today. These two sites show the impact of adding additional housing on an existing TOD. 34 
Langley Park has no Metro access today, but will get rail access with the completion of 35 
the Purple Line. College Park has a Metro Station but does not provide as much housing 36 
as Bethesda and Silver Spring provide in the immediate vicinity of the transit station. 37 
Langley Park and College Park are intended to be test beds for analyzing new TOD sites. 38 
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 1 
Figure 7: Tested sites for Transit-Oriented Development north of Washington D.C. 2 

 3 
In particular, SILO helps to better understand which segments of the population move 4 
into TOD. Does the overall transit share in a region change after TOD projects are 5 
implemented? Are the new residents mostly high-income households who keep their 6 
car(s) for most travel and enjoy the additional transit accessibility? To explore equity 7 
issues, we investigated the income distribution of TOD residents and who benefits from 8 
TOD mostly.  9 
 10 
Due to a major computer breakdown, it was impossible to provide simulation results in 11 
time to be included in this paper. The presentation will provide detailed results of these 12 
TOD scenarios.  13 

6 Conclusions 14 

Many land-use models focus on utility maximization, finding equilibriums and optimally 15 
allocating limited resources. The famous Lowry model is built to reach an equilibrium 16 
between location of work places and location of households every simulation period 17 
(Lowry, 1964). Similarly, most models using Alonso’s bid-rent approach (Alonso, 1964) 18 
assume an immediate equilibrium between land prices and demand for land. Dynamic 19 
urban models, in contrast, explicitly represent time delay and limited information that 20 
lead to imperfect equilibriums (Harris & Wilson, 1978; Wegener, 1986). While bid-rent 21 
models are assumed to better represent land-use prices, discrete choice models often are 22 
expected to more realistically represent delays as they happen in reality. For example, 23 
new demanded housing is not available to move in right away, but planning, obtaining 24 
building permissions and construction may take several years from when the demand is 25 
realized to when the first household may move in. While SILO follows the discrete 26 
choice modeling paradigm, the true benefits of either approach could best be determined 27 
by meta analyses that test the same scenarios in different models (Wegener, Mackett, & 28 
Simmonds, 1991).  29 
 30 
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Wegener (2014: 753-755) identified three principal challenges for land-use modeling: 1 
Modeling environmental impacts, being able to model decline rather than growth, and 2 
modeling the impacts of the future energy crises. Testing policies that address 3 
environmental impacts, such as carbon taxes, road pricing or energy-efficient buildings 4 
has an immediate impact on household budgets. Planning for decline requires reallocating 5 
limited resources, including closing of schools or redevelopment of brownfield sites. A 6 
future energy crisis may limit the availability of fossil fuels for transportation or heating 7 
and cooling, with an immediate impact on household mobility and budgets. If these 8 
challenges hold true, representing constraints will become even more important. If 9 
models miss representing changes in travel behavior and location choice under increasing 10 
transportation costs, model results will be less realistic and difficult to defend. If 11 
congestion worsens and people spend more time traveling, models that miss adjusting 12 
destination choice, mode choice and trip chaining will produce unlikely results. 13 
Representing constraints rather than the entire map of opportunities will become more 14 
important in a scarce energy future.  15 
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