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Summary 32 
With the ongoing debates from Florida to California and throughout the country concerning the 33 
benefits of high-speed rail, there is a renewed interest in intercity mode choice modeling. The 34 
investments for improving long-distance travel are substantial and may have serious impacts on 35 
travel demand, the environment and the economy. As such, alternatives for improving long-36 
distance travel require careful evaluation before decisions are made on the form and design of 37 
long-distance travel infrastructure. A new nested multinomial logit mode-choice model has been 38 
developed that is sensitive to travel costs, distance, transit station accessibility, service 39 
frequency, number of transfers and parking costs. On the auto side the model considers the 40 
modes drive-alone and shared-ride with 2, 3 and 4 or more passengers. The transit side models 41 
regional bus, rail and air as modal options. To explore the model sensitivities, scenarios on 42 
increased gasoline prices and improved bus service are described. 43 

After a short introduction, the state-of-the-art of mode choice modeling is reviewed. 44 
Section 3 explains how total travel demand is generated, and section 4 describes the mode choice 45 
model developed in this paper. Section 5 describes the application to the North Carolina 46 
Statewide Transportation Model (NCSTM) and section 6 shows the scenario application. The 47 
paper ends with conclusions and future research. 48 

 49 
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1. INTRODUCTION 7 
In the last few years, a new interest in mode choice analysis has risen due to the controversy 8 
regarding the implementation of high-speed rail in different parts of the U.S. Analysis tools, 9 
however, have not caught up with this new demand in transportation modeling. The vast majority 10 
of mode choice models developed over the last few decades have been implemented for urban 11 
models with a focus on short-distance travel, where modal availability is different from long-12 
distance travel. The travel behavior in long-distance travel is quite different, too, as people tend 13 
to be more familiar with modal options for short-distance travel than for long-distance travel. In 14 
addition, the composition of travelers differs. While short-distance use of transit is dominated by 15 
commuters, long-distance transit modes (particularly rail and air) are heavily used for pleasure 16 
trips as well as by business travelers. Given the fact that long-distance travelers tend to stay 17 
longer at their destination, travel time tends to be a less dominant factor in mode choice than in 18 
short-distance travel.  19 

Investments for improving long-distance travel often are tremendous. Adding a lane to an 20 
existing highway or even building a new highway may cost millions of dollars, just as adding a 21 
new rail line or improving the speed on an existing rail line may be cost-intensive. 22 
Environmental impacts may be serious, as increased auto traffic or air travel may increase 23 
gaseous emissions and noise levels substantially. Finally, the economic impact may be 24 
significant as well. According to Krugman [1], more accessible regions are ceteris paribus 25 
economically more successful. Thus, long-distance infrastructure may affect economic growth of 26 
different regions notable. Given the impacts on travel demand, congestion, the environment and 27 
the economy, changes to long-distance infrastructure ought to be analyzed carefully before 28 
investments are made.  29 

Understanding mode choice is an integral part of transportation analysis. Foremost, mode 30 
choice is relevant if any kind of modal availability is analyzed, such as the implementation of a 31 
new rail service, extension of existing bus service or making auto travel faster, slower, more 32 
expensive or cheaper. Even if only the auto side is under investigation, modal analysis is 33 
relevant. Removing the right number of travelers from the highway system that are using transit 34 
is important just to get the number of auto travelers correct. Finally, mode choice analysis may 35 
be relevant even where no transit is available in the area studied. Often, high-occupancy vehicles 36 
and the willingness to pay a toll is treated as a mode choice and can be dealt with more rigidly in 37 
mode choice than in trip assignment. 38 

 39 
2. STATE-OF-THE-ART 40 
Grayson [2] developed one of the earliest logit-based mode choice models for long-distance 41 
travel. His model covers long-distance travel of 100 miles [1 mile = 1.61 km] or more and the 42 
estimation is based on the National Travel Survey from 1977. Coefficients were estimated for the 43 
purposes business, social and entertainment. The incremental logit model developed by 44 
Koppelman [3] is an interesting alternative for mode choice modeling, as it only requires 45 
ridership on the existing modes and the properties of the new transit service to be tested. This 46 
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model allows studying the effects of adding or changing a single mode of transport. The model 1 
was developed for the urban context, and to our knowledge it has not been tested for long-2 
distance mode choice modeling.  3 

Forinash and Koppelman [4] compared the traditional multinomial mode choice model 4 
with a nested mode choice model. They conclude that a major disadvantage of the multinomial 5 
model is that if one mode of travel changes, the relative probability of choosing an unchanged 6 
mode is fixed, which is also called the independence of irrelevant alternatives problem. The 7 
nested mode choice model, in contrast, affects modes that are grouped in the same nest as the 8 
changing mode to a larger extend than modes in a different nest. They tested six different nesting 9 
structures with the four modes auto, bus, train and air and found that a reasonable nesting of 10 
modes results in more plausible sensitivities of a mode choice model. Specifically to analyze 11 
high-speed rail ridership, Wen and Koppelman [5] developed a Nested Logit model with Paired 12 
Combinational Logit, Cross-Nested Logit and Product Differentiation Model, which they applied 13 
to the planned high-speed rail corridor from Montreal to Toronto. While the multinomial model 14 
led to mode-specific constant of up to 8.2, the generalized nested logit model reduced the highest 15 
constant to 5.3. Bhat [6] developed a heteroscedastic extreme value model of intercity mode 16 
choice that also overcomes the independence of irrelevant alternatives property of the more 17 
commonly used multinomial logit model, and found that it worked better than logit or probit 18 
models.  19 

Baik et al. [7] developed a complete travel demand model for long-distance travel by 20 
Auto, Air and "Air Taxi", including generation, distribution, mode choice and assignment. The 21 
estimation is based on the somewhat dated American Travel Survey (ATS) of the Bureau of 22 
Transportation Statistics (BTS) from 1995. The mode train was left out due to limitations in the 23 
survey data. De Lapparent et al. [8] analyzed stated preference data on mode choice decisions in 24 
the Czech Republic, Switzerland and Portugal. They find quite different travel behavior, which 25 
they explain with different travelers’ preferences in these three counties. Partly, however, this 26 
may also be due to comparatively small data samples in this study. Grimal [9] points out that the 27 
habit of short-distance mode choice affects long-distance mode choice.  28 

Abdelwahab [10] implemented and calibrated two long-distance mode choice models in 29 
Canada, one in the East and one in the West. He tested the transferability of the two models and 30 
found a transferred model to be 18-23% less accurate than a locally estimated and calibrated 31 
model. After adjusting the mode-specific constants to reflect observed modal shares in the 32 
application context, the predictive ability of the models improved by about 10%. Unfortunately, 33 
the paper does not document the mode-specific constants that were calibrated. It may well be that 34 
smaller mode-specific constants make a model more transferable, as more power is given to the 35 
explanatory variables, rather than correcting aspects not captured by the model with constants. 36 
Wilson et al. [11] implemented two long-distance mode choice models for the eastern and 37 
western regions of Canada. The model distinguishes auto, bus, rail and air. For reasons not 38 
further discussed, the eastern model is using unusually high constants (up to 18.016 for rail), 39 
while the western model has much more reasonable constants (up to 1.362 for bus). 40 

Blackstone et al. [12] analyzed a survey for airport choice in the corridor from Baltimore 41 
to New York (including the airports BWI, EWR, JFK and PHL), which by definition is part of 42 
the decision process for long-distance travel. They find that the location of the workplace plays a 43 
crucial role when selecting an airport, as many trips by air are business trips that start or end at 44 
the workplace. Başar and Bhat [13] developed a probabilistic choice set multinomial logit model 45 
for the airport choice in the San Francisco Bay Area (including the airports SFO, SJC and OAK). 46 
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The NHTS data records in combination with the synthesized records are considered to be 1 
a representative sample of long-distance travel in the U.S. The Bureau of Transportation 2 
Statistics (BTS) provides a ten percent sample of all ticketed air passengers2. This value is used 3 
as a control total to expand the NHTS data to a nationwide long-distance travel data set.  4 

Three trip purposes are distinguished, namely business, personal and commute trips. 5 
These purposes intentionally differ from trip purposes commonly used in urban travel demand 6 
models (such as home-based work, home-based shop, home-based other, non-home based, etc.). 7 
According to NHTS 2002, personal (often also called pleasure) is the most important trip 8 
purpose with 59% of all long-distance trips. Business is the second most common purpose with 9 
28% of all long distance trips. As expenses for a business trip commonly are reimbursed by the 10 
employer, trips with this purpose tend to be less price-sensitive and more travel-time sensitive. 11 
Commute trips (13% of all long-distance trips) are distinguished as a separate purpose, because 12 
in contrast to the other two purposes commute trips are frequently repeated trips, and therefore, 13 
tend to be more optimized than infrequent personal or business trips. Furthermore, origins and 14 
destinations of commute trips are more constrained by home and work locations than long-15 
distance trips of other purposes. 16 

The NHTS provides long-distance trips by home state and destination state. To increase 17 
the resolution, state-to-state trips are disaggregated to zone-to-zone trips using population density 18 
and employment as trip generators and attractors. For every trip purpose, employment and 19 
population are weighted differently when disaggregating trip origins and destinations. A gravity 20 
model ensures that the trip length frequency distribution reported in the NHTS is replicated after 21 
trip ends were disaggregated from states to zones. 22 

 23 
4. DESIGN OF R3LOGIT 24 
R3Logit has been built as a discrete choice mode selection model. It is based on a mode choice 25 
model originally developed as GLogit by Gordon Schultz, an early pioneer in travel demand 26 
modeling. Schultz initially developed this model for New Orleans in the mid-1980s, and it was 27 
later applied to about half a dozen projects across the U.S. For this application, the model has 28 
been revised to suit long-distance travel and to reflect most recent findings in mode choice 29 
modeling. R3Logit is designed as a nested multinomial logit model.  30 

FIGURE 2 shows the nesting structure. The definition of the nesting structure has an 31 
important impact on the mode split modeled, and the grouping of modal alternatives shall reflect 32 
the degree sensitivities across alternatives [4: 99]. Accordingly, R3Logit handles auto and transit 33 
at the same level as they are similar high-level choices. For auto, the model further distinguishes 34 
drive-alone, shared-ride 2, shared-ride 3 and shared-ride of 4 or more people. This level is 35 
relevant for two reasons. First of all, the model shall be able to analyze the impact of alternatives 36 
that include High-Occupancy Vehicle (HOV) lanes. Depending on whether the HOV lanes allow 37 
2+ person carpools or 3+ person carpools, the assignment would block these HOV lanes to either 38 
drive-alone or to drive-alone and shared-ride 2. Furthermore, the explicit distinction of vehicle 39 
occupancy improves modeling the number of vehicles on the highway system. Trip generation 40 
and trip distribution handle person trips, and several person trips may generate only one high-41 
occupancy vehicle trip. By dividing person trips by the occupancy, person trips can be converted 42 
into vehicle trips. On the transit side, the model distinguishes three modes that are most relevant 43 
for long-distance transit trips, namely bus, rail and air.  44 

                                                 
2 http://www.transtats.bts.gov/databases.asp?Subject_ID=3&Subject_Desc=Passenger%20Travel&Mode_ID2=0 
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TABLE 1: Coefficients and variables for utilities of drive-alone and share-ride modes 1 

Coefficient Description Value 
ui,j,m,p Utility of mode m (drive-alone, shared-ride 2, shared-ride 3 or 

shared-ride 4+) from zone i to zone j for purpose p 
 

ivtc In-vehicle time coefficient: Parameter evaluating the travel 
time spend in the vehicle 

-0.025* 

tti,j Travel time from zone i to zone j by auto  
ovtc Out-of-vehicle time coefficient: Parameter evaluating the 

travel time spend out of the vehicle 
-0.05* 

autoEgr Auto-egress time: Time spent to walk from the parking 
location to the final destination 

5 min 

prkcp Parking costs coefficient by purpose p (b) -0.006, (p)  
-0.012, (c) -
0.010* 

pj Parking costs in zone j  
occm Number of persons traveling by drive-alone, shared-ride 2, 

shared-ride 3 and shared-ride 4+ 
1, 2, 3, 4.1 
persons 

aoccp Auto-operating costs coefficient by purpose (b) -0.0009, (p) -
0.0039, (c) -
0.0029* 

disti,j Distance from zone i to zone j in miles  
Aoc Auto-operating costs 0.0874 cents per 

mile 
*In line with nested mode-choice theory, parameters are scaled by the nesting coefficient

 2 
The utility for transit trips takes into account time and cost of the transit trip, transit access and 3 
egress as well as frequency of service:  4 

 5 

autojjStatm
ji

mjStatiStat
pmjStatiStatp

mjStatiStatmjStatiStatmautoiStatipmji

ttivtctrnEgrovtc
dist

frqu
tfqcfaretrfc

trnsfntrcttivtctrnAccovtcttivtcu

,,
,

,,
,,

,,,,,,,,,

⋅+⋅+⋅+⋅

+⋅+⋅+⋅+⋅=

 Equation 2 6 

The utility for a transit trip includes  7 
(a) the trip from the origin to a transit station,  8 
(b) access time to transit,  9 
(c) transit travel time, number of transfers, transit fare and frequency of service,  10 
(d) egress time and  11 
(e) the trip from a transit station to the final destination.  12 
 13 

TABLE 2 lists the coefficients and variables used to calculate the utilities of transit modes. The 14 
transit fare coefficients are set equal to the parking cost coefficients to ensure consistency across 15 
modes. Under the assumption that travelers of trips with a very long distance are less concerned 16 
about infrequent travel connections, the frequency of service is divided by the distance traveled. 17 
For example, if someone is traveling 2,000 miles by air, this person is likely to stay for a longer 18 
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period of time, and therefore has some flexibility regarding departure and arrival time. On the 1 
other hand, a traveler making a trip of 75 miles is likely to stay for a shorter time, and therefore, 2 
expects a more frequent service to suit her or his travel plans. 3 

 4 
TABLE 2: Coefficients and variables for utilities of transit modes bus, rail and air 5 

Coefficient Description Value 
ui,j,m,p Utility of mode m (bus, rail or air) from zone i to zone j for  

purpose p 
 

Ivtc In-vehicle time coefficient: Parameter evaluating the travel 
time spend in a vehicle 

-0.025* 

tti,j,m Travel time from zone i to zone j on mode m  
Ovtc Out-of-vehicle time coefficient: Parameter evaluating the 

travel time spend out of the vehicle 
-0.05* 

trnAccm Time to access the transit, which includes the walk from the 
vehicle to the transit platform or gate, time for check-in and 
time for security checks 

Bus: 15, Rail: 30, 
Air: 60 

Ntrc Coefficient on number of transit transfers  -0.01* 
trnsfiStat,jStat,m Number of transfers to travel from iStat to jStat on mode m  
trfcp Transit fare coefficient by purpose (b) -0.006, (p)  

-0.012, (c) -
0.010* 

fareiStat,jStat,m Transit fare from iStat to jStat on mode m  
tfqcp Coefficient on frequency of service per day by mode (b) 0.2, (p) 0.1, 

(c) 0.1* 
FrquiStat,jStat,m Frequency of service from iStat to jStat on mode m per day  
disti,j Distance from zone i to zone j  
trnEgrm Time to egress the transit, which includes the walk from the 

transit platform or gate to a vehicle and time for collecting 
baggage 

Bus: 10, Rail: 15, 
Air: 20 

*In line with nested mode-choice theory, parameters are scaled by the nesting coefficient
 6 
Special attention is given to finding the best transit stations for a given origin-destination pair. In 7 
some cases, it might be beneficial to choose a transit station that is further away from the trip 8 
origin in order to catch a non-stop transit connection or to save on fare. Therefore, the three 9 
closest transit stations to both the origin and the destination are evaluated for a trip (FIGURE 3). 10 
Using Equation 2, the utilities are calculated for every iStat/jStat combination. Out of these nine 11 
alternatives, the iStat/jStat combination with the highest utility is chosen to be evaluated in the 12 
mode choice model.  13 
 14 
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transfers), autoEgr (Auto egress time) and FrquiStat,jStat,m (Frequency of transit service for 1 
selected origin/destination pairs). The model results changed in the expected direction, though 2 
the impact of changing a single parameter on the overall mode split was very small. 3 
 4 
5. APPLICATION IN NCSTM 5 
The North Carolina Department of Transportation (NCDOT) did not have the ability to get a 6 
relatively quick and approximate but consistent and defensible, estimate of how different 7 
patterns of future development change key measures of transportation performance, and a tool 8 
that can contribute to discussion and other evaluation tools that address how future transportation 9 
investments may affect future development patterns. Specifically, NCDOT wanted to test high 10 
level decisions regarding non-highway modes. The State is looking towards high-speed rail 11 
options, improvements to airports statewide (both access and service frequency) as well as 12 
upgrades to Amtrak rail service and intermodal connections. The R3Logit model allows for this 13 
high-level analysis of long-distance travel choices. 14 

A multi-state region was chosen as the boundary for development of the long-distance 15 
transit system. Included are all states east of the Mississippi River. This allowed capturing almost 16 
all long-distance trips that have an actual choice between modes, with longer trips being captured 17 
by air almost exclusively. Key cities in these states were included in the transit network, which 18 
were chosen by having both a connection with Amtrak and a larger airport. The transit network 19 
is limited to trips with at least one trip end within North Carolina. The mode share of through 20 
trips (External-to-External) is given by the NHTS data and kept static. 21 

Transit data including fare, frequency, number of transfers and travel duration was 22 
manually collected for Amtrak, Greyhound, GotoBus and Coach America NC using their 23 
passenger routing websites.  For air travel, a meta search engine3 was used to gather similar 24 
travel data.  25 

Any mode choice model can only account for a limited number of travel parameters. To 26 
correct for unincluded attributes, mode-specific constants were calibrated to match observed 27 
travel behavior. As no comprehensive mode share data were available for North Carolina, the 28 
NHTS 2002 was used to estimate the mode split. Still, with only 1,822 records of long-distance 29 
trips in North Carolina, the number of records was deemed as being too small to calculate the 30 
observed mode split. Therefore, the target mode share was calculated using records from the 31 
Southeast of the U.S. (including FL, GA, KY, NC, SC, TN, VA and WV), which provided a total 32 
of 10,022 records. After calibrating the mode-specific constants, the mode split shown in 33 
TABLE 4 is matched precisely by R3Logit. 34 
 35 
  36 

                                                 
3 Available at http://matrix.itasoftware.com 
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TABLE 4: Observed mode split and calibrated mode-specific constants 1 
Mode Observed share Mode-specific constants 
 Business Personal Commute Business Personal Commute 
Auto 47.5% 66.3% 91.8% 0 0 0
 Drive-alone 18.5% 6.5% 62.3% 0 0 0
 Shared-ride 2 14.1% 20.9% 18.7% 0.1227 0.5414 -0.1659
 Shared-ride 3 7.5% 15.4% 7.5% 0.0536 0.5657 -0.3241
 Shared-ride 4 7.4% 23.5% 3.3% 0.1443 0.7833 -0.4808
Transit 52.5% 33.7% 8.2% 4.1564 2.3716 0.1655
 Bus 31.9% 10.2% 2.3% 0 0 0
 Rail 0.3% 0.5% 1.7% -4.9869 -3.0159 -0.8836
 Air 20.3% 23.0% 4.2% 0.4784 2.2847 2.4338

 2 
The calibrated mode-specific constants are small on the auto side, which is desirable. On the 3 
transit side, constants are somewhat higher than desired, even though these constants are lower 4 
than many constants published by previous papers. Higher constants reduce the model 5 
sensitivities, as a larger share of the model result is explained by constants. The commute 6 
purpose constants are comparatively small, and thus provide the most reliable model. The high 7 
negative constant on rail travelers for the business and personal purposes is probably caused by 8 
limitations of the observed data. While BTS air travel statistics in comparison with AMTRAK 9 
ridership suggest that there should be 16-times as many air passengers as train passengers, the 10 
NHTS data for the southeastern states suggest that there were 41-times as many air passengers as 11 
train passengers. Rail passengers may be largely underrepresented in this dataset, which is likely 12 
to be the cause for the relatively high constants on rail.  13 
 14 
6. SCENARIO ANALYSIS 15 
To analyze the model sensitivities, two sample scenarios where modeled using R3Logit in 16 
NCSTM. One scenario implements an express bus service between Raleigh and Charlotte in 17 
North Carolina. It is assumed that this bus receives a reserved lane, allowing the bus to travel at 18 
free-flow speed. Travel time is 2.5 hours, costs are assumed to be $10, and a frequency of 10 19 
busses per day is assumed. This is an improvement over current bus service of 2 hours and 50 20 
minutes for $13, 7-times per day. Another scenario analyzes the impact of increased auto-21 
operating costs. In this scenario, the price for gasoline increases, resulting into tripled auto-22 
operating. As the first scenario only affects the Raleigh and Charlotte areas, only trips that have 23 
their origin in Wake County (Raleigh) and their destination in Mecklenburg County (Charlotte), 24 
or vice versa, are included in the summaries of TABLE 5.  25 

 26 
TABLE 5: Modal share for trips between Wake and Mecklenburg Counties by scenario 27 
Mode Base Express Bus Tripled AOC 

 Mode Share Mode Share Difference Mode Share Difference 
Drive-alone 9.9% 8.4% -1.4% 8.9% -1.0% 
Shared-ride 5.7% 5.3% -0.5% 5.7% 0.0% 
Bus 44.8% 56.7% 11.9% 45.1% 0.3% 
Rail 0.0% 0.0% 0.0% 0.0% 0.0% 
Air 39.6% 29.7% -10.0% 40.4% 0.7% 
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Improving the bus service between Charlotte and Raleigh attracts additional bus riders, drawing 1 
passengers in particular from air travel. The scenario with tripled auto-operating costs, in 2 
contrast, has little impact on mode shares. This is in line with the observed changes in mode split 3 
during the recent gas price peak in 2008, where oil prices rose quickly but mode split was not 4 
affected by a large margin.  5 

 6 
7. CONCLUSIONS 7 
Research in the U.K. suggests that while trips with a distance of more than 50 miles make up 8 
only 2 percent of all journeys, these trips account for 31 percent of all vehicle miles traveled [15: 9 
8]. A similar relationship was found for other European countries with 0.5 percent of all trips 10 
being more than 100 km long and contributing roughly 20 percent of total kilometers traveled 11 
[16]. Thus, long-distance travel contributes significantly to vehicle-miles traveled, congestion 12 
and emissions. Most research in mode-choice modeling, however, focuses on urban, short-13 
distance travel. While it might be easier to implement transit options at the urban scale, statewide 14 
and mega-regional planning agencies are required to understand modal options for long-distance 15 
travel. R3Logit is meant to contribute to analyzing scenarios that affect the mode share for long-16 
distance travel.  17 

Though the model is able to analyze a variety of scenarios in its current state, 18 
improvements are envisioned to enhance the applicability of the model. At this point, most 19 
concerning are the relatively high constants needed to match observed mode shares. Even though 20 
these constants are lower than those used in most other long-distance mode split models found in 21 
the literature, the size of the constants may still limit the policy sensitivity of the model. It 22 
appears that a bias in the observed mode split data might be a major cause for these relatively 23 
high constants. As it is very expensive to obtain better surveys for long-distance (which need to 24 
cover auto, bus, rail and air travelers), alternative forms of data collection, such as mobile phone 25 
data, appears to be promising to overcome this shortcoming. Aguilar et al. [17] found a 26 
reasonable accuracy of mobile phone GPS data on different modes, which may be used to 27 
determine the mode of transport of long-distance trips. Given the large quantity of data records 28 
that possibly could be retrieved from mobile phone data, the modal share derived this way is 29 
expected to be much more representative than the limited number of data records from NHTS 30 
2002 that where available for this study. 31 

The current model does not aim at quantifying induced demand. Induced demand, as 32 
defined by Lee et al. [18], describes travel demand that is generated as a consequence of 33 
infrastructure improvements. In other words, by making a certain destination more accessible, 34 
more people will decide to travel to that destination. The magnitude of induced demand may 35 
differ by which mode has been improved. Scherer [19] found that improved light rail tends to 36 
generate more induced demand than improved bus service. Weis and Axhausen [20] were able to 37 
quantify the induced demand based on historic auto travel demand in Switzerland, though 38 
findings are probably not transferable to different modes and different settings of competing 39 
modal alternatives. A common approach to estimate induced demand is the use of mode choice 40 
logsums, which are an aggregate across different modes that describe the ease of traveling 41 
between two locations. However, the coefficient used in such estimation is mostly guesswork, 42 
and has to be set individually for every application. With specific projects emerging, induced 43 
demand will be estimated based on similar projects elsewhere when applying R3Logit in 44 
production mode. 45 
 46 
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