oo DNk W —

Mode Choice Modeling for Long-Distance Travel

Paper submitted to the Transportation Research Board for the Annual Meeting 2013

Rolf Moeckel, Dr.-Ing. (Corresponding author)
Parsons Brinckerhoff

6100 NE Uptown Blvd, Suite 700
Albuquerque, NM 87501

Phone (505) 878-6553

moeckel@pbworld.com

Rhett Fussell, PE

Parsons Brinckerhoff

434 Fayetteville St, Suite 1500
Raleigh, NC 27601

Phone (919) 836-4075
fussell@pbworld.com

Rick Donnelly, PhD

Parsons Brinckerhoff

6100 NE Uptown Blvd, Suite 700
Albuquerque, NM 87501

Phone (505) 878-6524
donnellyR@pbworld.com

4,948 words and 8 figures/tables (equivalent of 250 words) = 6,948 words

Summary

With the ongoing debates from Florida to California and throughout the country concerning the
benefits of high-speed rail, there is a renewed interest in intercity mode choice modeling. The
investments for improving long-distance travel are substantial and may have serious impacts on
travel demand, the environment and the economy. As such, alternatives for improving long-
distance travel require careful evaluation before decisions are made on the form and design of
long-distance travel infrastructure. A new nested multinomial logit mode-choice model has been
developed that is sensitive to travel costs, distance, transit station accessibility, service
frequency, number of transfers and parking costs. On the auto side the model considers the
modes drive-alone and shared-ride with 2, 3 and 4 or more passengers. The transit side models
regional bus, rail and air as modal options. To explore the model sensitivities, scenarios on
increased gasoline prices and improved bus service are described.

After a short introduction, the state-of-the-art of mode choice modeling is reviewed.
Section 3 explains how total travel demand is generated, and section 4 describes the mode choice
model developed in this paper. Section 5 describes the application to the North Carolina
Statewide Transportation Model (NCSTM) and section 6 shows the scenario application. The
paper ends with conclusions and future research.



0O N DL B~ W

2RSS, P, DD WLWLWLWLWLWULWUWUWLWWWINDNDNNDPDNDNDPDNODNNDEND PP === =
NN HE WD~ O OO NPE WD, O OXOINNDE WD, OOV NIA WD —O N0

Moeckel, Fussell, Donnelly 2

Acknowledgement

The development of the long-distance mode choice model has been funded in part by the North
Carolina Department of Transportation. Special thanks go to Joe Kolousek and Carlee Clymer
for collecting and processing travel data on rail, bus and air long-distance travel.

1. INTRODUCTION

In the last few years, a new interest in mode choice analysis has risen due to the controversy
regarding the implementation of high-speed rail in different parts of the U.S. Analysis tools,
however, have not caught up with this new demand in transportation modeling. The vast majority
of mode choice models developed over the last few decades have been implemented for urban
models with a focus on short-distance travel, where modal availability is different from long-
distance travel. The travel behavior in long-distance travel is quite different, too, as people tend
to be more familiar with modal options for short-distance travel than for long-distance travel. In
addition, the composition of travelers differs. While short-distance use of transit is dominated by
commuters, long-distance transit modes (particularly rail and air) are heavily used for pleasure
trips as well as by business travelers. Given the fact that long-distance travelers tend to stay
longer at their destination, travel time tends to be a less dominant factor in mode choice than in
short-distance travel.

Investments for improving long-distance travel often are tremendous. Adding a lane to an
existing highway or even building a new highway may cost millions of dollars, just as adding a
new rail line or improving the speed on an existing rail line may be cost-intensive.
Environmental impacts may be serious, as increased auto traffic or air travel may increase
gaseous emissions and noise levels substantially. Finally, the economic impact may be
significant as well. According to Krugman [1], more accessible regions are ceteris paribus
economically more successful. Thus, long-distance infrastructure may affect economic growth of
different regions notable. Given the impacts on travel demand, congestion, the environment and
the economy, changes to long-distance infrastructure ought to be analyzed carefully before
investments are made.

Understanding mode choice is an integral part of transportation analysis. Foremost, mode
choice is relevant if any kind of modal availability is analyzed, such as the implementation of a
new rail service, extension of existing bus service or making auto travel faster, slower, more
expensive or cheaper. Even if only the auto side is under investigation, modal analysis is
relevant. Removing the right number of travelers from the highway system that are using transit
is important just to get the number of auto travelers correct. Finally, mode choice analysis may
be relevant even where no transit is available in the area studied. Often, high-occupancy vehicles
and the willingness to pay a toll is treated as a mode choice and can be dealt with more rigidly in
mode choice than in trip assignment.

2. STATE-OF-THE-ART

Grayson [2] developed one of the earliest logit-based mode choice models for long-distance
travel. His model covers long-distance travel of 100 miles [1 mile = 1.61 km] or more and the
estimation is based on the National Travel Survey from 1977. Coefficients were estimated for the
purposes business, social and entertainment. The incremental logit model developed by
Koppelman [3] is an interesting alternative for mode choice modeling, as it only requires
ridership on the existing modes and the properties of the new transit service to be tested. This
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model allows studying the effects of adding or changing a single mode of transport. The model
was developed for the urban context, and to our knowledge it has not been tested for long-
distance mode choice modeling.

Forinash and Koppelman [4] compared the traditional multinomial mode choice model
with a nested mode choice model. They conclude that a major disadvantage of the multinomial
model is that if one mode of travel changes, the relative probability of choosing an unchanged
mode is fixed, which is also called the independence of irrelevant alternatives problem. The
nested mode choice model, in contrast, affects modes that are grouped in the same nest as the
changing mode to a larger extend than modes in a different nest. They tested six different nesting
structures with the four modes auto, bus, train and air and found that a reasonable nesting of
modes results in more plausible sensitivities of a mode choice model. Specifically to analyze
high-speed rail ridership, Wen and Koppelman [5] developed a Nested Logit model with Paired
Combinational Logit, Cross-Nested Logit and Product Differentiation Model, which they applied
to the planned high-speed rail corridor from Montreal to Toronto. While the multinomial model
led to mode-specific constant of up to 8.2, the generalized nested logit model reduced the highest
constant to 5.3. Bhat [6] developed a heteroscedastic extreme value model of intercity mode
choice that also overcomes the independence of irrelevant alternatives property of the more
commonly used multinomial logit model, and found that it worked better than logit or probit
models.

Baik et al. [7] developed a complete travel demand model for long-distance travel by
Auto, Air and "Air Taxi", including generation, distribution, mode choice and assignment. The
estimation is based on the somewhat dated American Travel Survey (ATS) of the Bureau of
Transportation Statistics (BTS) from 1995. The mode train was left out due to limitations in the
survey data. De Lapparent et al. [8] analyzed stated preference data on mode choice decisions in
the Czech Republic, Switzerland and Portugal. They find quite different travel behavior, which
they explain with different travelers’ preferences in these three counties. Partly, however, this
may also be due to comparatively small data samples in this study. Grimal [9] points out that the
habit of short-distance mode choice affects long-distance mode choice.

Abdelwahab [10] implemented and calibrated two long-distance mode choice models in
Canada, one in the East and one in the West. He tested the transferability of the two models and
found a transferred model to be 18-23% less accurate than a locally estimated and calibrated
model. After adjusting the mode-specific constants to reflect observed modal shares in the
application context, the predictive ability of the models improved by about 10%. Unfortunately,
the paper does not document the mode-specific constants that were calibrated. It may well be that
smaller mode-specific constants make a model more transferable, as more power is given to the
explanatory variables, rather than correcting aspects not captured by the model with constants.
Wilson et al. [11] implemented two long-distance mode choice models for the eastern and
western regions of Canada. The model distinguishes auto, bus, rail and air. For reasons not
further discussed, the eastern model is using unusually high constants (up to 18.016 for rail),
while the western model has much more reasonable constants (up to 1.362 for bus).

Blackstone et al. [12] analyzed a survey for airport choice in the corridor from Baltimore
to New York (including the airports BWI, EWR, JFK and PHL), which by definition is part of
the decision process for long-distance travel. They find that the location of the workplace plays a
crucial role when selecting an airport, as many trips by air are business trips that start or end at
the workplace. Bagar and Bhat [13] developed a probabilistic choice set multinomial logit model
for the airport choice in the San Francisco Bay Area (including the airports SFO, SJIC and OAK).
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They find that access time to the airport is the most important explanatory variable, but also
frequency of service has influence on the airport choice.

The review of the literature revealed important benefits of a nested logit model compared
to a traditional multinomial logit model. It also showed the limited transferability of existing
models to other study areas without recalibrating the model. The relevance of selecting the most
likely transit station, which may not be the closest station, became apparent. Most existing
models, however, do not take into account special attributes of long-distance travel, such as
specific long-distance travel purposes, severe travel time extensions by check-in or security
procedures for some transit modes, or the fact that travelers do not necessarily live right next to a
transit station, nor do they necessarily travel to destinations right next to a transit station. The
model developed in this paper aims at surpassing these limitations.

3. LONG-DISTANCE TRAVEL DEMAND

To generate the travel demand, a Nationwide Estimate of Long-Distance Travel (NELDT) has
been developed and implemented to simulate person long-distance travel across the U.S. [14].
Figure 1 shows the workflow of NELDT. The key input is the long-distance element of the
National Household Travel Survey (NHTS) 2002', which contains 45,165 trip records of long-
distance trips of 50 miles or more. Unfortunately, the NHTS 2009' did not contain a long-
distance element, which made it necessary to use the previous NHTS dataset.

State BTS air
population BHS dala travel data

l

) Y

Synthesize missing Derive nation-wide
states control total

I |

v

Expand NHTS

|

Disaggregate state-
to-state trips to TAZ

l

Feed trips into
R3Logit

FIGURE 1: NELDT design

NHTS provides long-distance travel records by home state of the traveler. For privacy reasons,
the NHTS dataset only reports the origin state for trips from states with a population of 2 million
or more. For smaller states, synthetic data records were generated based on using travel data
records of surrounding states for which records were available.

! Available for download at http://nhts.ornl.gov/download.shtml
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The NHTS data records in combination with the synthesized records are considered to be
a representative sample of long-distance travel in the U.S. The Bureau of Transportation
Statistics (BTS) provides a ten percent sample of all ticketed air passengers®. This value is used
as a control total to expand the NHTS data to a nationwide long-distance travel data set.

Three trip purposes are distinguished, namely business, personal and commute trips.
These purposes intentionally differ from trip purposes commonly used in urban travel demand
models (such as home-based work, home-based shop, home-based other, non-home based, etc.).
According to NHTS 2002, personal (often also called pleasure) is the most important trip
purpose with 59% of all long-distance trips. Business is the second most common purpose with
28% of all long distance trips. As expenses for a business trip commonly are reimbursed by the
employer, trips with this purpose tend to be less price-sensitive and more travel-time sensitive.
Commute trips (13% of all long-distance trips) are distinguished as a separate purpose, because
in contrast to the other two purposes commute trips are frequently repeated trips, and therefore,
tend to be more optimized than infrequent personal or business trips. Furthermore, origins and
destinations of commute trips are more constrained by home and work locations than long-
distance trips of other purposes.

The NHTS provides long-distance trips by home state and destination state. To increase
the resolution, state-to-state trips are disaggregated to zone-to-zone trips using population density
and employment as trip generators and attractors. For every trip purpose, employment and
population are weighted differently when disaggregating trip origins and destinations. A gravity
model ensures that the trip length frequency distribution reported in the NHTS is replicated after
trip ends were disaggregated from states to zones.

4. DESIGN OF R’LOGIT

R’Logit has been built as a discrete choice mode selection model. It is based on a mode choice
model originally developed as GLogit by Gordon Schultz, an early pioneer in travel demand
modeling. Schultz initially developed this model for New Orleans in the mid-1980s, and it was
later applied to about half a dozen projects across the U.S. For this application, the model has
been revised to suit long-distance travel and to reflect most recent findings in mode choice
modeling. R*Logit is designed as a nested multinomial logit model.

FIGURE 2 shows the nesting structure. The definition of the nesting structure has an
important impact on the mode split modeled, and the grouping of modal alternatives shall reflect
the degree sensitivities across alternatives [4: 99]. Accordingly, R*Logit handles auto and transit
at the same level as they are similar high-level choices. For auto, the model further distinguishes
drive-alone, shared-ride 2, shared-ride 3 and shared-ride of 4 or more people. This level is
relevant for two reasons. First of all, the model shall be able to analyze the impact of alternatives
that include High-Occupancy Vehicle (HOV) lanes. Depending on whether the HOV lanes allow
2+ person carpools or 3+ person carpools, the assignment would block these HOV lanes to either
drive-alone or to drive-alone and shared-ride 2. Furthermore, the explicit distinction of vehicle
occupancy improves modeling the number of vehicles on the highway system. Trip generation
and trip distribution handle person trips, and several person trips may generate only one high-
occupancy vehicle trip. By dividing person trips by the occupancy, person trips can be converted
into vehicle trips. On the transit side, the model distinguishes three modes that are most relevant
for long-distance transit trips, namely bus, rail and air.

? http://www.transtats.bts.gov/databases.asp?Subject ID=3&Subject Desc=Passenger%20Travel&Mode ID2=0
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FIGURE 2: Nesting structure of R*Logit

Mode-specific constants are used to account for unincluded attributes, such as the comfort of
seats in a certain mode, having a radio in your car, or the perception that a certain mode was
more convenient than another mode. At every choice set, there is one option without a constant
(i.e. auto, drive-alone and bus), and the constants for the other choices describe the unincluded
relative benefit of that choice in comparison to the constant-less choice. The nesting coefficient
for the upper level (choice between auto and transit) was set to 0.3, and utilities at the lower level
are calculated using the following equations. The utility for drive-alone and shared-ride trips
takes into account travel time and distance, auto-operating costs and parking cost and is
calculated by equation 1:

05-p, dist, ; - aoc
+aocc, - —
occ occ

m m

u =ivic-1t, ; + ovic - autoEgr + prke,, - Equation 1

i,j,m,p

TABLE 1 lists the coefficients and variables used in this calculation. The out-of-vehicle time
coefficient is twice as negative as the in-vehicle time coefficient, as time walking to and from the
vehicle tends to be perceived as more burdensome than the travel time in the vehicle.

The auto-egress time (i.e. the time to walk from the parking location to the final
destination) is set to be 5 minutes. In future version, this value might change depending on the
destination. While five minutes are very reasonable in urban areas, they are somewhat high for
suburban and rural areas where travelers usually can park right in front of their destination.
However, as most long-distance trips are destined to urban areas, a fairly high value was chosen
for this variable.

The number of persons traveling in a single vehicle for the occupancy of 4 or more was
based on the assumption that most vehicles do not carry more than 5 passengers, and therefore,
the average number of passengers in the category 4+ is likely to be close to 4.

The coefficient on auto-operating costs has less impact on mode choice than parking
costs. This is based on the assumption that out-of-pocket costs for parking are perceived as more
onerous than auto-operating costs that include hidden expenses for purchase, maintenance and
insurance of a vehicle.

In Equation 1, parking costs are multiplied by 0.5 as they equally apply to the outbound
and the return trip. As travel time and costs are accounted for one way only, parking costs are
divided in half to be consistent. Monetary costs are divided by the number of passengers to
account for savings of car-pooling.
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TABLE 1: Coefficients and variables for utilities of drive-alone and share-ride modes

Uijmp Utility of mode m (drive-alone, shared-ride 2, shared-ride 3 or
shared-ride 4+) from zone i to zone j for purpose p
vtc In-vehicle time coefficient: Parameter evaluating the travel -0.025"
time spend in the vehicle
1 Travel time from zone i to zone j by auto
ovtc Out-of-vehicle time coefficient: Parameter evaluating the -0.05
travel time spend out of the vehicle
autoEgr Auto-egress time: Time spent to walk from the parking 5 min
location to the final destination
prkc, Parking costs coefficient by purpose p (b) -0.006, (p)
-0.012, (¢) -
0.010"
p; Parking costs in zone j
ocey, Number of persons traveling by drive-alone, shared-ride 2, 1,2, 3,4.1
shared-ride 3 and shared-ride 4+ persons
aoccy, Auto-operating costs coefficient by purpose (b) -0.0009, (p) -
0.0039, (c) -
0.0029°
dist; ; Distance from zone i to zone j in miles
Aoc Auto-operating costs 0.0874 cents per
mile

"In line with nested mode-choice theory, parameters are scaled by the nesting coefficient

The utility for transit trips takes into account time and cost of the transit trip, transit access and
egress as well as frequency of service:
= ivic-1t, +

i,iStat ,auto

u +ovic - trndcc,, +ivic - tt + ntrc - trnsf,

i,j,m,p iStat, jStat ,m Stat, jStat ,m

JrqQU g isiarm Equation 2
rfe, - fare g, sun +494¢, %+ ovtc-trnEgr, +ivic-tt
o Ist,
LJ

JStat, j,auto

The utility for a transit trip includes
(a) the trip from the origin to a transit station,
(b) access time to transit,
(c) transit travel time, number of transfers, transit fare and frequency of service,
(d) egress time and
(e) the trip from a transit station to the final destination.

TABLE 2 lists the coefficients and variables used to calculate the utilities of transit modes. The
transit fare coefficients are set equal to the parking cost coefficients to ensure consistency across
modes. Under the assumption that travelers of trips with a very long distance are less concerned
about infrequent travel connections, the frequency of service is divided by the distance traveled.
For example, if someone is traveling 2,000 miles by air, this person is likely to stay for a longer
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period of time, and therefore has some flexibility regarding departure and arrival time. On the
other hand, a traveler making a trip of 75 miles is likely to stay for a shorter time, and therefore,
expects a more frequent service to suit her or his travel plans.

TABLE 2: Coefficients and variables for utilities of transit modes bus, rail and air

Coefficient  Description Value
Uijmp Utility of mode m (bus, rail or air) from zone i to zone j for
purpose p
Ivtc In-vehicle time coefficient: Parameter evaluating the travel -0.025"
time spend in a vehicle
tijm Travel time from zone i to zone j on mode m
Ovtc Out-of-vehicle time coefficient: Parameter evaluating the -0.05
travel time spend out of the vehicle
trnAcc,, Time to access the transit, which includes the walk from the Bus: 15, Rail: 30,

vehicle to the transit platform or gate, time for check-in and Air: 60
time for security checks

Ntrc Coefficient on number of transit transfers -0.01°
trnstisisam  Number of transfers to travel from iStat to jStat on mode m
trfc, Transit fare coefficient by purpose (b) -0.006, (p)
-0.012, (¢) -
0.010°
fareisiisim  1ransit fare from iStat to jStat on mode m
tfqc, Coefficient on frequency of service per day by mode (b) 0'2; (p) 0.1,
(c) 0.1
Frquisiisim  Frequency of service from iStat to jStat on mode m per day
dist; ; Distance from zone i to zone j
trnEgry, Time to egress the transit, which includes the walk from the Bus: 10, Rail: 15,
transit platform or gate to a vehicle and time for collecting Air: 20
baggage

"In line with nested mode-choice theory, parameters are scaled by the nesting coefficient

Special attention is given to finding the best transit stations for a given origin-destination pair. In
some cases, it might be beneficial to choose a transit station that is further away from the trip
origin in order to catch a non-stop transit connection or to save on fare. Therefore, the three
closest transit stations to both the origin and the destination are evaluated for a trip (FIGURE 3).
Using Equation 2, the utilities are calculated for every iStat/jStat combination. Out of these nine
alternatives, the iStat/jStat combination with the highest utility is chosen to be evaluated in the
mode choice model.
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Origin i |

Destination j

jstat, ‘

fi
FIGURE 3: Evaluation of three transit stations near origin and destination

Equations 1 and 2 are used to calculate the utilities of all seven modes at the lowest level. The
utilities at the higher level (to choose between auto and transit) are calculated using mode choice
logsums, including all modes that belong into this nest:

Ui jom,p =NC" ln(zexp(“i,j,m,p)' eXp(cm )] Equation 3

mem

Equation 3 sums up the utilities calculated either in equation 1 (for auto) or in equation 2 (for
transit) and adjusts them by their respective mode-specific constant. Using the respective share
of utilities, the mode split is calculated.

TABLE 3: Coefficients and variables for utilities of the auto and transit choice

Coefficient Description | Value
Uijp Utility of mode 7 (auto or transit) from zone i to zone j for

purpose p
nc Nesting coefficient 0.3
Uijmp Utility of mode m (which is part of the nest of 77) from zone i

to zone j for purpose p
Cm Mode-specific constant to account for unincluded attributes of

mode m

The coefficients used in R*Logit are not estimated but rather heuristically derived. No data were
available to estimate coefficients. The NHTS data, which was used to generate the total travel
demand, has a rather low share of train and bus travel records, making it questionable to estimate
coefficients using these data. A comparison of estimated coefficients found in the literature
reveals that many estimations reveal very similar coefficients. Therefore, the coefficients used in
this model are considered to be generic enough to be applied in different study areas. To confirm
that the setting of a given parameter does not disturb model sensitivities, a series of sensitivity
test were run to ensure that no single parameter drives the model results. Adjustments were made
to the parameters #rfc, (Coefficient on transit fare), ntrc (Coefficient on number of transit
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transfers), autoEgr (Auto egress time) and Frquisijsiam (Frequency of transit service for
selected origin/destination pairs). The model results changed in the expected direction, though
the impact of changing a single parameter on the overall mode split was very small.

5. APPLICATION IN NCSTM

The North Carolina Department of Transportation (NCDOT) did not have the ability to get a
relatively quick and approximate but consistent and defensible, estimate of how different
patterns of future development change key measures of transportation performance, and a tool
that can contribute to discussion and other evaluation tools that address how future transportation
investments may affect future development patterns. Specifically, NCDOT wanted to test high
level decisions regarding non-highway modes. The State is looking towards high-speed rail
options, improvements to airports statewide (both access and service frequency) as well as
upgrades to Amtrak rail service and intermodal connections. The R’Logit model allows for this
high-level analysis of long-distance travel choices.

A multi-state region was chosen as the boundary for development of the long-distance
transit system. Included are all states east of the Mississippi River. This allowed capturing almost
all long-distance trips that have an actual choice between modes, with longer trips being captured
by air almost exclusively. Key cities in these states were included in the transit network, which
were chosen by having both a connection with Amtrak and a larger airport. The transit network
is limited to trips with at least one trip end within North Carolina. The mode share of through
trips (External-to-External) is given by the NHTS data and kept static.

Transit data including fare, frequency, number of transfers and travel duration was
manually collected for Amtrak, Greyhound, GotoBus and Coach America NC using their
passenger routing websites. For air travel, a meta search engine’ was used to gather similar
travel data.

Any mode choice model can only account for a limited number of travel parameters. To
correct for unincluded attributes, mode-specific constants were calibrated to match observed
travel behavior. As no comprehensive mode share data were available for North Carolina, the
NHTS 2002 was used to estimate the mode split. Still, with only 1,822 records of long-distance
trips in North Carolina, the number of records was deemed as being too small to calculate the
observed mode split. Therefore, the target mode share was calculated using records from the
Southeast of the U.S. (including FL, GA, KY, NC, SC, TN, VA and WV), which provided a total
of 10,022 records. After calibrating the mode-specific constants, the mode split shown in
TABLE 4 is matched precisely by R’Logit.

3 Available at http://matrix.itasoftware.com



0 3O\ LN KW

11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

Moeckel, Fussell, Donnelly 11

TABLE 4: Observed mode split and calibrated mode-specific constants

Mode-specific constants
Business Personal Commute | Business Personal | Commute
Auto 47.5% 66.3% 91.8% 0 0 0
Drive-alone 18.5% 6.5% 62.3% 0 0 0
Shared-ride 2 14.1% 20.9% 18.7% 0.1227 0.5414 -0.1659
Shared-ride 3 7.5% 15.4% 7.5% 0.0536 0.5657 -0.3241
Shared-ride 4 7.4% 23.5% 3.3% 0.1443 0.7833 -0.4808
Transit 52.5% 33.7% 8.2% 4.1564 2.3716 0.1655
Bus 31.9% 10.2% 2.3% 0 0 0
Rail 0.3% 0.5% 1.7% -4.9869 -3.0159 -0.8836
Air 20.3% 23.0% 4.2% 0.4784 2.2847 2.4338

The calibrated mode-specific constants are small on the auto side, which is desirable. On the
transit side, constants are somewhat higher than desired, even though these constants are lower
than many constants published by previous papers. Higher constants reduce the model
sensitivities, as a larger share of the model result is explained by constants. The commute
purpose constants are comparatively small, and thus provide the most reliable model. The high
negative constant on rail travelers for the business and personal purposes is probably caused by
limitations of the observed data. While BTS air travel statistics in comparison with AMTRAK
ridership suggest that there should be 16-times as many air passengers as train passengers, the
NHTS data for the southeastern states suggest that there were 41-times as many air passengers as
train passengers. Rail passengers may be largely underrepresented in this dataset, which is likely
to be the cause for the relatively high constants on rail.

6. SCENARIO ANALYSIS

To analyze the model sensitivities, two sample scenarios where modeled using R*Logit in
NCSTM. One scenario implements an express bus service between Raleigh and Charlotte in
North Carolina. It is assumed that this bus receives a reserved lane, allowing the bus to travel at
free-flow speed. Travel time is 2.5 hours, costs are assumed to be $10, and a frequency of 10
busses per day is assumed. This is an improvement over current bus service of 2 hours and 50
minutes for $13, 7-times per day. Another scenario analyzes the impact of increased auto-
operating costs. In this scenario, the price for gasoline increases, resulting into tripled auto-
operating. As the first scenario only affects the Raleigh and Charlotte areas, only trips that have
their origin in Wake County (Raleigh) and their destination in Mecklenburg County (Charlotte),
or vice versa, are included in the summaries of TABLE 5.

TABLE 5: Modal share for trips between Wake and Mecklenburg Counties by scenario

Mode '| Base Express Bus Tripled AOC |
' | Mode Share | Mode Share Difference | Mode Share Difference ‘
Drive-alone 9.9% 8.4% -1.4% 8.9% -1.0%
Shared-ride 5.7% 5.3% -0.5% 5.7% 0.0%
Bus 44.8% 56.7% 11.9% 45.1% 0.3%
Rail 0.0% 0.0% 0.0% 0.0% 0.0%
Air 39.6% 29.7% -10.0% 40.4% 0.7%
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Improving the bus service between Charlotte and Raleigh attracts additional bus riders, drawing
passengers in particular from air travel. The scenario with tripled auto-operating costs, in
contrast, has little impact on mode shares. This is in line with the observed changes in mode split
during the recent gas price peak in 2008, where oil prices rose quickly but mode split was not
affected by a large margin.

7. CONCLUSIONS

Research in the U.K. suggests that while trips with a distance of more than 50 miles make up
only 2 percent of all journeys, these trips account for 31 percent of all vehicle miles traveled [15:
8]. A similar relationship was found for other European countries with 0.5 percent of all trips
being more than 100 km long and contributing roughly 20 percent of total kilometers traveled
[16]. Thus, long-distance travel contributes significantly to vehicle-miles traveled, congestion
and emissions. Most research in mode-choice modeling, however, focuses on urban, short-
distance travel. While it might be easier to implement transit options at the urban scale, statewide
and mega-regional planning agencies are required to understand modal options for long-distance
travel. R’Logit is meant to contribute to analyzing scenarios that affect the mode share for long-
distance travel.

Though the model is able to analyze a variety of scenarios in its current state,
improvements are envisioned to enhance the applicability of the model. At this point, most
concerning are the relatively high constants needed to match observed mode shares. Even though
these constants are lower than those used in most other long-distance mode split models found in
the literature, the size of the constants may still limit the policy sensitivity of the model. It
appears that a bias in the observed mode split data might be a major cause for these relatively
high constants. As it is very expensive to obtain better surveys for long-distance (which need to
cover auto, bus, rail and air travelers), alternative forms of data collection, such as mobile phone
data, appears to be promising to overcome this shortcoming. Aguilar et al. [17] found a
reasonable accuracy of mobile phone GPS data on different modes, which may be used to
determine the mode of transport of long-distance trips. Given the large quantity of data records
that possibly could be retrieved from mobile phone data, the modal share derived this way is
expected to be much more representative than the limited number of data records from NHTS
2002 that where available for this study.

The current model does not aim at quantifying induced demand. Induced demand, as
defined by Lee et al. [18], describes travel demand that is generated as a consequence of
infrastructure improvements. In other words, by making a certain destination more accessible,
more people will decide to travel to that destination. The magnitude of induced demand may
differ by which mode has been improved. Scherer [19] found that improved light rail tends to
generate more induced demand than improved bus service. Weis and Axhausen [20] were able to
quantify the induced demand based on historic auto travel demand in Switzerland, though
findings are probably not transferable to different modes and different settings of competing
modal alternatives. A common approach to estimate induced demand is the use of mode choice
logsums, which are an aggregate across different modes that describe the ease of traveling
between two locations. However, the coefficient used in such estimation is mostly guesswork,
and has to be set individually for every application. With specific projects emerging, induced
demand will be estimated based on similar projects elsewhere when applying R’Logit in
production mode.



O INN KW~

A BB DBSWOLWLWLWLWLWUWWWLWUWWERNRNDNNDPDNODINDNNPDNEND ===
NP WL, OO NDE WD, OOV NIA,WNO—RL OO WD~ O O

Moeckel, Fussell, Donnelly 13

8. REFERENCES

1.

17.

Krugman, P., Increasing Returns and Economic Geography. Journal of Political
Economy, 1991. 99(3): p. 483-499.

Grayson, A., Disaggregate Model of Mode Choice in Intercity Travel. Transportation
Research Record: Journal of the Transportation Research Board, 1981. 835: p. 36-42.
Koppelman, F.S., Predicting Transit Ridership in Response to Transit Service Changes.
Journal of Transportation Engineering, 1983. 109(4): p. 548-564.

Forinash, C.V. and F.S. Koppelman, Application and Interpretation of Nested Logit
Models of Intercity Mode Choice. Transportation Research Record: Journal of the
Transportation Research Board, 1993. 1413: p. 98-106.

Wen, C.-H. and F.S. Koppelman, The generalized nested logit model. Transportation
Research Part B: Methodological, 2001. 35: p. 627-641.

Bhat, C.R., A Heteroscedastic Extreme Value Model of Intercity Mode Choice.
Transportation Research Part B: Methodological, 1995. 29(6): p. 471-483.

Baik, H., et al., Forecasting Model for Air Taxi, Commercial Airline, and Automobile
Demand in the United States. Transportation Research Record: Journal of the
Transportation Research Board, 2008. 2052: p. 9-20.

de Lapparent, M., A. Frei, and K.W. Axhausen. Choice of mode for long distance travel:
current SP-based models from three European countries. in ETC 2009. 20009.
Leeuwenhorst.

Grimal, R., Spatial analysis of long-distance mobility, in World Conference on Transport
Research2010: Lisbon, Portugal. p. 24.

Abdelwahab, W.M., Transferability of intercity disaggregate mode choice models in
Canada. Canadian Journal of Civil Engineering, 1991. 18: p. 20-26.

Wilson, F.R., S. Damodaran, and J.D. Innes, Disaggregate mode choice models for
intercity passenger travel in Canada. Canadian Journal of Civil Engineering, 1990. 17: p.
184-191.

Blackstone, E.A., A.J. Buck, and S. Hakim, Determinants of Airport Choice in a Multi-
Airport Region. Atlantic Economic Journal, 2006. 34: p. 313-326.

Basar, G. and C. Bhat, A parameterized consideration set model for airport choice: an
application to the San Francisco Bay Area. Transportation Research Part B, 2004. 38: p.
889-904.

Moeckel, R. and R. Donnelly. Nationwide Estimate of Long-Distance Travel (NELDT).
Generating External Trips for Local Travel Demand Models. in Annual Meeting of the
Transportation Research Forum. 2011. Long Beach, CA.

Dargay, J. and S. Clark, The determinants of long distance travel: An analysis based on
the British national travel survey, in World Conference on Transport Research2010:
Lisbon, Portugal. p. 21.

Axhausen, K.W., Preparing for the long of it: Methodological research for an European
survey of long distance travel, in TRB Conference: Personal Travel: The long and short
of it2000: Washington, D.C.

Aguilar, D.P., et al., Quantifying Position Accuracy of Multimodal Data from Global
Positioning System—Enabled Cell Phones. Transportation Research Record: Journal of
the Transportation Research Board, 2007. 1992: p. 54-60.



—

SOOI N B WD~

Moeckel, Fussell, Donnelly 14

18.

19.

20.

Lee, D.B.,, L.A. Klein, and G. Camus, Induced Traffic and Induced Demand.
Transportation Research Record: Journal of the Transportation Research Board, 1999.
1659: p. 68-75.

Scherer, M., Is Light Rail More Attractive to Users Than Bus Transit? Arguments Based
on Cognition and Rational Choice. Transportation Research Record: Journal of the
Transportation Research Board, 2010. 2144: p. 11-19.

Weis, C. and K.W. Axhausen, Induced travel demand: Evidence from a pseudo panel

data based structural equations model. Research in Transportation Economics, 2009.
25(1): p. 8-18.



